141 research outputs found

    Modeling Multi-mode D2D Communications in LTE

    Full text link
    In this work we propose a roadmap towards the analytical understanding of Device-to-Device (D2D) communications in LTE-A networks. Various D2D solutions have been proposed, which include inband and outband D2D transmission modes, each of which exhibits different pros and cons in terms of complexity, interference, and spectral efficiency achieved. We go beyond traditional mode optimization and mode-selection schemes. Specifically, we formulate a general problem for the joint per-user mode selection, connection activation and resource scheduling of connections.Comment: A shorter version of this manuscript is accepted for publication in MAMA workshop collocated with Sigmetrics'1

    Opportunistic device-to-device communication in cellular networks: from theory to practice

    Get PDF
    Mención Internacional en el título de doctorCellular service providers have been struggling with users’ demand since the emergence of mobile Internet. As a result, each generation of cellular network prevailed over its predecessors mainly in terms of connection speed. However, the fifth generation (5G) of cellular network promises to go beyond this trend by revolutionizing the network architecture. Device-to-Device (D2D) communication is one of the revolutionary changes that enables mobile users to communicate directly without traversing a base station. This feature is being actively studied in 3GPP with special focus on public safety as it allows mobiles to operate in adhoc mode. Although under the (partial) control of the network, D2D communications open the door to many other use-cases. This dissertation studies different aspects of D2D communications and its impact on the key performance indicators of the network. We design an architecture for the collaboration of cellular users by means of timely exploited D2D opportunities. We begin by presenting the analytical study on opportunistic outband D2D communications. The study reveals the great potential of opportunistic outband D2D communications for enhancing energy efficiency, fairness, and capacity of cellular networks when groups of D2D users can be form and managed in the cellular network. Then we introduce a protocol that is compatible with the latest release of IEEE and 3GPP standards and allows for implementation of our proposal in a today’s cellular network. To validate our analytical findings, we use our experimental Software Defined Radio (SDR)-based testbed to further study our proposal in a real world scenario. The experimental results confirm the outstanding potential of opportunistic outband D2D communications. Finally, we investigate the performance merits and disadvantages of different D2D “modes”. Our investigation reveals, despite the common belief, that all D2D modes are complementary and their merits are scenario based.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Douglas Leith.- Secretario: Albert Banchs Roca.- Vocal: Carla Fabiana Chiasserin

    Modeling D2D communications with LTE and WiFi

    Get PDF
    In this work we propose a roadmap towards the analytical understanding of Device-to-Device (D2D) communications in LTE-A networks. Various D2D solutions have been proposed, which include inband and outband D2D transmission modes, each of which exhibits different pros and cons in terms of complexity, interference, and spectral efficiency achieved. We go beyond traditional mode optimization and mode-selection schemes. Specifically, we formulate a general problem for the joint per-user mode selection, connection activation and resource scheduling of connections using both LTE and WiFi resources

    Floating band D2D:exploring and exploiting the potentials of adaptive D2D-enabled networks

    Get PDF
    In this paper, we propose Floating Band D2D, an adaptive framework to exploit the full potential of Device-to-Device (D2D) transmission modes. We show that inband and outband D2D modes exhibit different pros and cons in terms of complexity, interference, and spectral efficiency. Moreover, none of these modes is suitable as a one-size-fits-all solution for today's cellular networks, due to diverse network requirements and variable users' behavior. Therefore, we unveil the need for going beyond traditional single-band mode-selection schemes. Specifically, we model and formulate a general and adaptive multi-band mode selection problem, namely Floating Band D2D. The problem is NP-hard, so we propose simple yet effective heuristics. Our results show the superiority of the Floating Band D2D framework, which dramatically increases network utility and achieves near complete fairness

    An efficient modelling technique for analysis of thin-walled laminated composite beams having open and closed cross sections

    Get PDF
    This thesis contains a series of journal and conference papers focused on the development of an efficient technique based on a one-dimensional beam finite element model for analysis of thin-walled composite beams having both open and closed cross sections. The formulation derived in this study has sufficient generality for accommodating any stacking sequence of individual beam walls and it has considered all possible couplings between axial, shear, bending and torsional deformation modes of the beam. The effect of transverse shear deformation of walls and out of plane warping of the beam section is considered where provision exists to restrain or allow the cross-sectional warping. Composite laminates are generally weak in transverse shear due to their low shear stiffness relative to the extensional rigidity. Thus, it is important to incorporate the effect of shear deformation to ensure reliable predictive capability for all relevant loading scenarios. However, the implementation of shear deformation in a finite element framework has been found to be challenging. The different techniques proposed so far by other researchers to address these difficulties are unfortunately having some issues such as instability/spurious deformation modes in the results or presence of non-physical displacement components in these formulations. In this thesis, the incorporation of shear deformation within a finite element formulation for thin-walled composite beams is successfully achieved in a novel way. The proposed model is further developed for Vibration, Vibration with preloading, Buckling, Preloaded Buckling and Dynamic Stability of thin-walled laminated composite beams. Numerical examples of open sections I beams and closed section box beams are solved by the proposed approach. A large number of results obtained in this study are compared with those available in literature for the validation of the proposed model, which show a very good performance of the model. The effect of preloading in the form of axial load, end moments and their combined actions on the behaviour of these composite beams are studied.Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering, 201

    An Improved Water Strider Algorithm for Optimal Design of Skeletal Structures

    Get PDF
    Water Strider Algorithm (WSA) is a new metaheuristic method that is inspired by the life cycle of water striders. This study attempts to enhance the performance of the WSA in order to improve solution accuracy, reliability, and convergence speed. The new method, called improved water strider algorithm (IWSA), is tested in benchmark mathematical functions and some structural optimization problems. In the proposed algorithm, the standard WSA is augmented by utilizing an opposition-based learning method for the initial population as well as a mutation technique borrowed from the genetic algorithm. By employing Generalized Space Transformation Search (GSTS) as an opposition-based learning method, more promising regions of the search space are explored; therefore, the precision of the results is enhanced. By adding a mutation to the WSA, the method is helped to escape from local optimums which is essential for engineering design problems as well as complex mathematical optimization problems. First, the viability of IWSA is demonstrated by optimizing benchmark mathematical functions, and then it is applied to three skeletal structures to investigate its efficiency in structural design problems. IWSA is compared to the standard WSA and some other state-of-the-art metaheuristic algorithms. The results show the competence and robustness of the IWSA as an optimization algorithm in mathematical functions as well as in the field of structural optimization
    corecore